Two-Way Update

Presented by Microcom Design, Inc. March 2018

General Two-Way History

- Long been a desire of the DCS community to have a communication link to the remote DCPs.
 - The addition of two way communications would considerably enhance the value of the entire DCS system.
 - Also known as DCPI (interrogate) and DCPC (command).
- Original 1965 design was based on Interrogate Operation
 - DCPI was never widely utilized due to limited capability and cost of receivers.
 - DCPI link terminated around 2005 since it did not meet NTIA Power Spectral Density (PSD) requirements.
- Work by NOS/Sutron (circa 2007-2009) proved feasibility of a spread spectrum approach to meet PSD.
 - DCPC utilized Direct Sequence Spread Spectrum (DSSS).
 - Never fully implemented by NOAA.
- Two-Way transponders have always been available.
 - GOES-R series satellites include DCP I/C transponder, but may be removed from future satellites if not utilized.

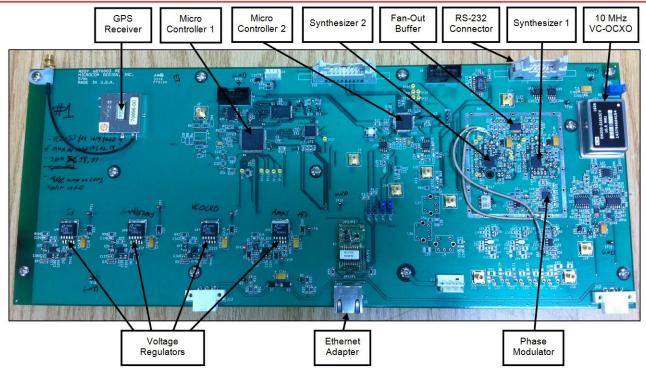
2015 Two-Way Study

- In 2015, NOAA tasked Microcom with performing comprehensive study on resurrecting the Two-Way
- Two-Way Link Concerns:
 - DCS is an NTIA Secondary Licensee on non-Interference basis with FCC Primary Licensees
 - Primary Licensee is Land Mobile Radio (LMR).
- Study results presented at April TWG and formal report submitted to NOAA In July.
- > 2015 Study Key Recommendations:
 - Frequency Hopping Spread Spectrum (FHSS) instead of DSSS.
 - FHSS will perform better in busy LMR environment.
 - NOAA to fund and provide reference receiver design.
 - Utilize DADDS to provide secure User interface for sending commands, confirming receipt, and delivering response.
 - Synchronize hop pattern, packet structure and error correction (Reed-Solomon) to UTC.
 - Quicker acquisition when time known, allows time sync when not.

2016 Two-Way Study

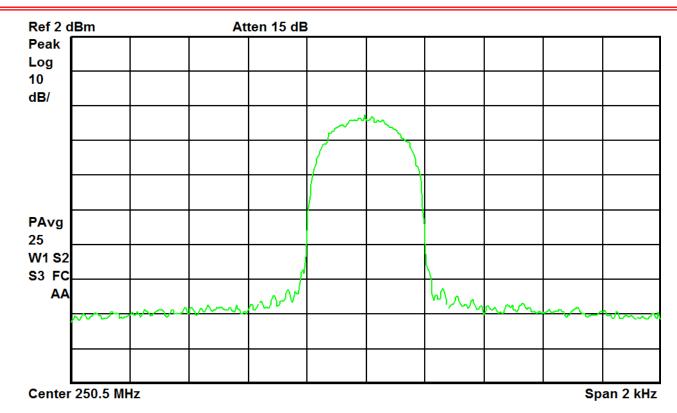
- In 2016 NOAA authorized Microcom to perform a follow-on study to further confirm the FHSS recommendation.
- 2016 Study Goals
 - Extend simulation models to better confirm FHSS performance in presence of LMR interference.
 - Evaluate impact on Bit Error Rate (BER) with truncated RS (250,218).
- Study results presentation at May TWG.
- 2016 Study Key Results
 - Simulations confirmed only minor BER degradation in the presence of two simulated, 20 dB stronger LMR signals.
 - Negligible performance difference for shortened RS (250,218) versus (255,233); shortened code showed slight improvement.
- Following 2016 TWG, NOAA requested proposal to build prototype modulator and demodulator for bench test.
- Bench prototype work began in the fall of 2016.

Two-Way Project Status

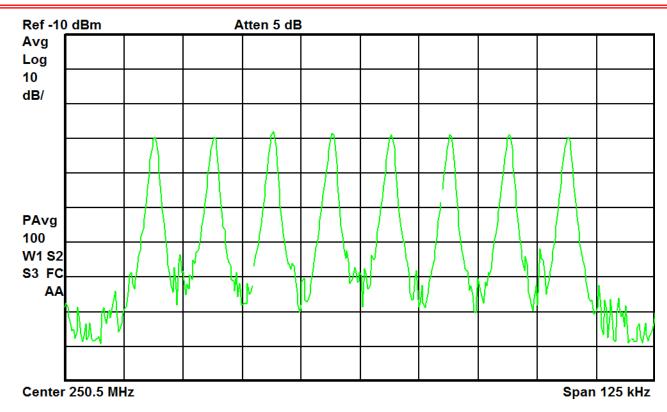


- Two-Way bench prototype put on hold due to budget and priority concerns in early 2017.
- Unexpected DCS Management change and focus on GOES-16 further delayed resuming project.
- In early October 2017, NOAA authorized resumption of work on bench prototype.
- Progress has been good, but running slightly behind target schedule.
 - Changed from TI TM4C123 ARM processor to TI AM3358 ARM due to CPU utilization concerns.
 - Performance of AM3358's integral ADC proved not as good as TM4C123 and required integrating external ADC into prototype design.
- Prototype modulator and demodulator have been mated, and Microcom is getting close to performance testing.

Bench Prototype - Modulator



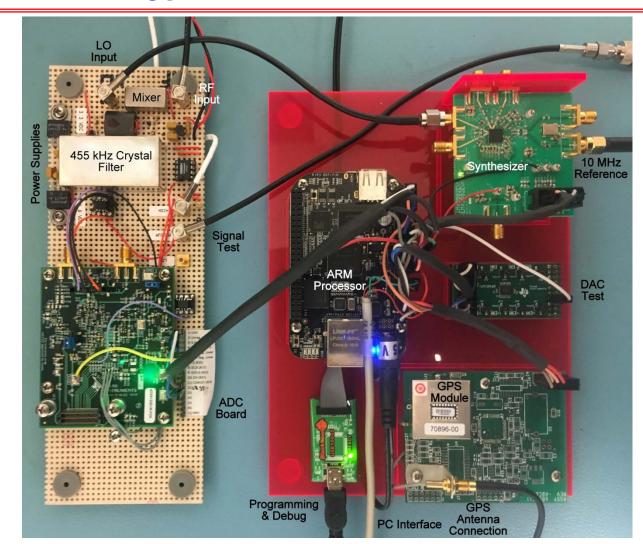
- Modulator completed in 2016; custom design based on DCS Pilot/Test Transmitter previously designed for NOAA.
- Can produce a variety of test signals to support the demodulator development; including desired FHSS BPSK signal at 200 bps with pseudo-random data.



Modulator – Un-hopped Output Spectrum

- Modulated signal from un-hopped output.
- ➢ Biphase random data at 200 symbols per second (sps).

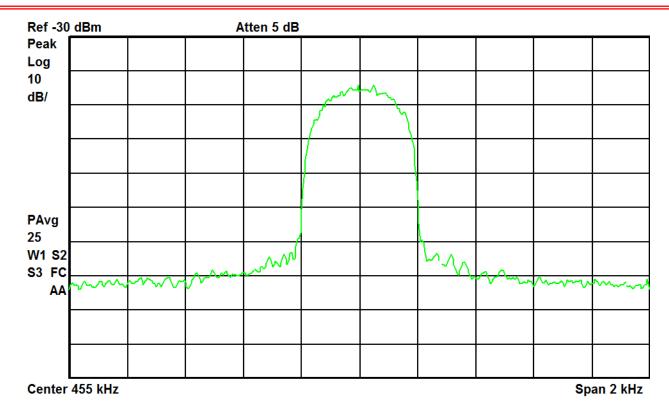
Modulator - Hopped Output Spectrum



- Modulated FHSS output with long-term average.
- ➢ Eight frequency hops spaced at 12.5 kHz.
- LMR signal would appear at vertical divisions.

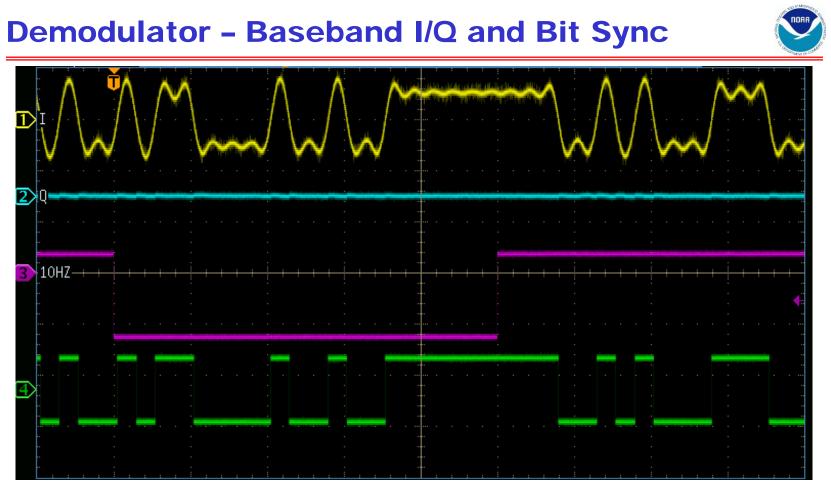
Bench Prototype - Demodulator

Bench Prototype - Demodulator Functionality



- Demodulator built from several off-the-shelf evaluation boards along with custom breadboard circuits.
- Demodulator Hardware Functions Implemented:
 - Precision synthesizer to produce Local Oscillator (LO) for both single frequency and hopping pattern.
 - Mixer stage to produce 455 kHz IF.
 - Narrowband (~1kHz) crystal filter for noise and LMR signal rejection.
 - Pre-ADC IF amplifier stages.
 - GPS module for time synchronization.
 - High sample rate Analog to Digital Converter (ADC).
- Demodulator Software and Digital Signal Processing (DSP)
 - ADC sampling of a 455 kHz IF with ...
 - Direct digital down conversion to 5 kHz IF and digital 5 kHz LO.
 - Costas loop phase lock on both un-hopped and hopped input.
 - Baseband filtering, bit recovery, and byte framing.
 - LO Hop pattern synchronized to GPS/UTC.

Demodulator - 455 kHz IF Spectrum



- De-hopped 455 kHz IF produced from mixing FHSS modulated signal with hopped LO.
- > No significant signal/hopping noise outside RRC lobe.

- > IF signal just before ADC sampling.
- Biphase random data present at 200 sps.
- Root Raises Cosine (RRC) envelope readily apparent.

- Costas loop allows phase modulated data to be recovered; In-Phase (1) component carries data and Quadrature (2) component indicates stability.
- Bit timing synchronized to 0.1 second hops (3).
- Bits (4) extracted and formatted into bytes for capture by …

Bench Prototype - Test Utility

- Interfaces to both modulator and demodulator.
- Supplies Modulator with pseudo-random data in Reed Solomon encoded blocks.
- Ingests framed data from Demodulator.
- Will score both raw Bit Error Rate (BER) and corrected BER (still in process).
- Performance tests will be done with Additive White Gaussian Noise (AWGN) and simulated LMR signals.

ile <u>T</u> xComm	<u>R</u> xCo	mm <u>H</u> e	elp																	
Random	0	Carrier		0	Biphase		0.0	ount		Invert	Bits	22	88		0			-		
												,								
		Pr	evious	Transm	itted By	tes							Р	revious	Receiv	ed Byte	s			
0xCE 0x60	0x23	0x83	0x08	0xD0	0x02	0x87	0x19	0xD9		OXCE	0x60	0x23	0x83	0x08	0xD0	0x02	0x87	0x19	0xD9	
0x1B 0xC7	0xF7	0x56	0xB5	0x7C	0xAB	0xE1	0xA5	0xBB		0x1B	0xC7	0xF7	0x56	0xB5	0x7C	0xAB	0xE1	0xA5	0xBB	
0xF2 0x9E													0xBB							
0x75 0x06 0x58 0x10													0xDD 0x15							_
0x6B 0xFD													0x55							
0x91 0xB3													0xFA							
0x04 0xF9 0x69 0xED													0x66 0x92							
0x69 0xE0 0xE9 0xA1													0x92 0x84							
OxCB OxF3													0x2A							
0xD1 0xE1													0xDC							
0x10 0x7E 0xD9 0xC3													0x15 0x1B							
0x2A 0x21													0x7C							
0x84 0x33													0xDB							
0x70 0xB4 0x22 0x0B													0x03 0x76							
0x22 0x08 0x00 0xB1													0x76							
0xCF 0xEA	0x91	0xF9	0x1F	0x2B	0x7C	0x92	0x28	0x74		0xCF	0xEA	0x91	0xF9	0x1F	0x2B	0x7C	0x92	0x28	0x74	
0xF8 0xC3													0x24							
0x53 0x9F 0x04 0xE8													0xBF 0x95							
0x95 0x3D													0x35							
0xEF 0xD4									_				0x00							
0x29 0x5F	0x6C	0x14	0x79	0x12	0xD7	0x0F	0x4B	0xEA	-	0x29	0x5F	0x6C	0x14	0x79	0x12	0xD7	0x0F	0x4B	0xEA	-
Current 250 Transmitted Bytes										Current 250 Received Bytes										
0x28 0x8F	0xDA	0x6F	0xDB	0x3A	0x3B	0x81	0xC2	0xDC		0x28	0x8F	0xDA	0x6F	0xDB	0x3A	0x3B	0x81	0xC2	0xDC	1
0x94 0x11													0x1C							
0x9C 0xC2 0x58 0x9B													0xBC 0x2E							
0x58 0x98 0x3D 0xCA													0x2E 0xD0							
0x53 0xE7										0x53	0xE7	0x3B	0xB5	0xEB	0x5F	0x5B	0x06	0xA8	0xB2	
0x45 0x9A													0xEA							
0x01 0xF7 0xE4 0xBF													0x32 0xB9							
0xE4 0xEf													0x03							
0xAF 0x4B	0xE1	0xAB	0xC6	0xE3	0x83	0xD7	0x81	0xE1		0xAF	0x4B	0xE1	0xAB	0xC6	0xE3	0x83	0xD7	0x81	0xE1	
0x49 0x3F													0xAB							
0x01 0x70 0x37 0x4E													0x8C 0x51							
0xDE 0x8D	0xB9	0xD1	0x6C	0xEA	0x8D	0x9C	0x4D	0x5A		0xDE	0x8D	0xB9	0xD1	0x6C	0xEA	0x8D	0x9C	0x4D	0x5A	
0xC0 0x6F													0xCD							
0x17 0x90 0x13 0x54													0x26 0x21							
													0x21 0x27							
0xC6 0x4D	0x3F	0x4E	0xA8	0xBC	0x34	0x76	0x2C	0xB5		0x04	0xE1	0x3F	0x4E	0xA8	0xBC	0x34	0x76			
0xC6 0x4D 0x04 0xE1		0x51	0xDB	0x68	0x21	0x93	0x1B	0xDE		0x68	0x3C	0x35	0x51	0xDB	0x68	0x21	0x93			
0xC6 0x4D	0x35																			
0xC6 0x4D 0x04 0xE1	0x35																			
0xC6 0x4D 0x04 0xE1	UX35																			

Bench Prototype - Next Steps

- Bench Prototype.
 - Finalize Test Utility
 - Initial performance tests.
 - Demodulator fine tuning.
 - Final performance testing.
 - Prepare summary report with findings and submit to NOAA.
- Possible Future Tasks Subject to NOAA Approval
 - Over-the-Air Test/Demonstration
 - Extend bench prototypes to prototype Transmitter and Receiver.
 - Will need to account for ~0.24 second travel delay at receiver.
 - Possibly implement packet protocol to include time information.
 - Confirm performance results in Over-the-Air test using GOES-16.
 - Data Rate and Error Coding Evaluation
 - Possibly consider alternative error coding schemes.
 - Evaluate the potential for increase in data rate.
 - System Demonstration
 - Tie Over-the-Air prototypes to DADDS to demonstrate Two-Way command initiation, DCP response, and DADDS acknowledgement.

