Update on Proposed New HRIT DCS File Format

Presented by Microcom Design, Inc. March 2018

Background

- > Original LRIT/HRIT File Format from 2003-2005
 - Uses mix of ASCII and binary fields.
 - Provides the DAPS error message statistics.
 - Major deficiency is DAPS frequency resolution.
 - +/- 500 Hz with 50 Hz resolution.
 - Current CS2 transmitter limit is +/- 125 Hz
- > New format proposed at September 2017 TWG.
- Proposed format updated based on TWG feedback and presented to STIWG in November.
- In December NOAA did an Outreach to the DCS Community looking for input and feedback for the updated proposal – minimal response.
 - Really hoping for manufacturer feedback.

Possible Areas of Confusion

- > Proposal is to only change HRIT file format.
 - As messages are received by NOAA, the DADDS collects the messages into files.
 - Each file contains a File Header followed by one or more DCS Messages.
 - Header information for each message is included before the actual DCP message data.
 - The DCP message data is included <u>as received</u>.
- > Proposal does not change ...
 - Format of the actual DCS Message
 - The format of any other DCS message dissemination protocol; DAMS-NT, DOMSAT, DDS (LRGS/OpenDCS).
- Reception equipment/software <u>must</u> parse file to extract DCP messages and re-format them into another DCS protocol.

Reason for Suggesting Change

- Current LRIT/HRIT format uses DAPS era Message Quality Statistics.
 - The DAPS message quality fields were specified in the 1980's (over 30 years ago) and are generally accepted to be inadequate today.
- New format can convey more/better information with fewer header bytes.
- Higher data rate of HRIT vs LRIT offers transition opportunity with the potential for both formats to be included for a limited time, but ...
 - subject to NOAA approval
 - with varying priorities; i.e. latencies
 - utilization of HRIT growing so may not be available in the future

Updated Recommendations & Comparison

Proposed Format 1			
Field Name	Bytes	Format	
Block Identifier	1	Integer Unsigned	
Message Block Length	2	Integer Unsigned	
Sequence Number	3	Integer Unsigned	
Message Flags/Baud	1	Bit Mapped	
Message ARM Code	1	ASCII Char (G,?,M,T,W, etc.)	
Corrected Address	4	Hexadecimal	
Original Address	4	Hexadecimal	
Carrier Start	7	BCD	
Message End	7	BCD	
Signal Strength X10	2	Integer Unsigned	
Frequency Offset X10	2	Integer Signed	
Phase Noise X100	2	Integer Unsigned	
Good Phase X2	1	Integer Unsigned	
Channel	2	Integer Unsigned	
Spacecraft	1	ASCII Character (E,W)	
Source Code	2	ASCII Characters	
Source Secondary	2	TBD	
Message Data	Var	ASCII or Pseudo-Binary	
Block CRC	2	Hexadecimal	

Proposed Format 2			
Field Name	Bytes	Format	
Block Identifier	1	Integer Unsigned	
Message Block Length	2	Integer Unsigned	
Sequence Number	3	Integer Unsigned	
Message Flags/Baud	1	Bit Mapped	
Message ARM Flag	1	Bit Mapped	
Corrected Address	4	Hexadecimal	
Carrier Start	7	BCD	
Message End	7	BCD	
Signal Strength X10	2	Integer Unsigned	
Frequency Offset X10	2	Integer Signed	
Phase Noise X100	2	Integer Unsigned	
Good Phase X2	1	Integer Unsigned	
Channel/Spacecraft	2	Integer Unsigned/Bit Mapped	
Source Code	2	ASCII Characters	
Source Secondary	2	TBD	
Message Data	Var	ASCII or Pseudo-Binary	
Block CRC	2	Hexadecimal	
Overhead Total	: 41		

Overhead Total: 46

Two proposed formats: Format 1 is based off initial proposal with the addition of the Source Secondary and the Block CRC.

Proposed Format 2

- Replaces the ARM character code with ARM flag bits.
 - Eliminates to need to send multiple informational messages doesn't happen too often, but it is possible (e.g. a corrected address with a message out of window).

Eliminates the Received Address:

- If it is a corrected address this is noted in the ARM flags.
- When the address is valid or uncorrectable the Received Address and Corrected Address are identical and therefore redundant.
- Since only 1 or 2 bits can be corrected, not sure the Received Address has any value when it is corrected.
- Combines the Channel and Spacecraft fields.
- Missed Messages are a different Block type with a reduced header.
 - Since several fields cannot be filled in for Missed Messages (e.g. Signal Strength, Frequency Offset, etc.) these are omitted.
 - No message data field is present since no message was received.

Transition Comments

- Would be nice if both formats could be transmitted during a defined transition period.
 - Could be supported by LRIT/HRIT file type designation in primary header. Current DCS file type is 130 (0x82); requires a new DCS file type for the new format.
 - Alternate suggestion is to utilize a different Type field in the file header.
 - Format identification approach is still under consideration.
 - Initial period (3-6 months) old format would have priority.
 - Second period (3-6 months) new format would have priority.
- > Utilization requirements:
 - Presently DCS accounts for ~4% of the HRIT transmission.
 - Transmitting 2 streams would double utilization to 8%.
 - Fill accounts for 15-20% (but varies and long periods of no fill occur).
- Dual streams during transition still to be approved by NOAA.

Other DCS Protocols & Improved Stats

- > No formal proposal to update other protocols; discussions only.
- DOMSAT Ku Band Rebroadcast
 - Slated to be shutdown in May 2019 \Rightarrow no reason to update.
- DAMS-NT DRGS Standard Output
 - Also used by Microcom LRIT/HRIT receiver.
 - Data source for DDS servers at WCDA, NSOF, EDDN, etc.
 - Protocol can be updated and preserve backward compatibility.
 - Ingest systems would have to be updated to make use of the improved message statistics, but ...
 - Legacy ingest systems would ignore extra data until updated.
- DDS DCS Data Service
 - Used by LRGS, OpenDCS, DAMS-NT Client and other software packages to transfer DCS data over networks and the Internet.
 - Can be updated and preserve backward compatibility.
 - Since all DCS messages are received by a DRGS, DAMS-NT protocol would have to be updated before improved statistics could flow to DDS servers.

