

GOES DCS RFI Investigation

Wallops Command and Data Acquisition Station

Project Goals

- Identify degraded channels/frequencies in DCS
- Characterize interfering signal(s)/RF energy
- •Determine source(s) (local, satellite, etc.)
- Identify ground-based location of RFI source(s)
- •Eliminate interfering signal(s) if possible

Problem Description

•DCS channels blocked by RFI

-Initially channels 65, 66

-Most recently noticed by WCDAS personnel on Ch 166

Interference probably present for >10 yrs

-RFI has been occasionally logged on these same channels

-RFI was listed as sporadic and/or 'rogue' emitters

-Occasional checks logged RFI as sporadic

•DCS carrier detect indicator lights

-Cannot process legitimate signal

-Channel is 'locked-up' by low level carrier

•RFI present on all GOES Spacecraft DCS systems

-Levels differ

–Frequencies differ

DCS Team Est.

•JSC/Alion requested to provide technical support

•Coordination with OSD/WCDAS engineering staffs

•Spectrum survey programs and equipment deployed to take measurements at WCDAS

–Documented presence of narrow band carrier on channels 66, 166

–Identified & documented narrow band RFI on Ch 200, & 266 and other channels at lower levels

-Energy detected using 1 & 10 Hz bandwidths

-RFI waveform was CW signal

DCS/RFI Resolution Process

•Attacked problem on four fronts:

- 1. Ground-based RF receive system
- 2. Satellite self-generated RFI
- 3. Geo-location for terrestrial RFI emitter
- 4. Search transmitter database for candidates

1. RF Receive System

DCS Channelized system

RFI present at 74 & 5 MHz Ifs
Bandwidth of RFI signals = 1 Hz
Continuing to characterize RFI to find identifying characteristics

Local RFI

-Looked for local RFI using 13-meter polar antenna -Demonstrated RFI present at other sites (FCDAS)

Antennas and down converters -RFI present at LNA output

2. Satellite Generated RFI

•Satellite self-generated RFI

-RFI stable, tracked spacecraft LO & AGC

-RFI frequency identical on multiple spacecraft on some channels

-RFI frequencies not related to on-board oscillators

•Investigated RFI from other geo-stationary spacecraft

–Similarity of RFI signatures in Ch 266 on GOES-10 & 9 suggested geo-stationary source

–Possible Space Ops (S-E) at 401-402 MHz – no match

–No allocations to space at subharmonics – no matches

-Checked ITU space frequency database - no conflicts found

3. Geo-location for Terrestrial RFI

- •Utilized assets available through JSC Operations-Satellite triangulation
- Identified multiple potential RFI sources and locations
- Identified uplink CW RF sources within the DCS band, additional RFI located on new channels
 - –Will further investigate frequencies at WCDAS

4. Transmitter Database

•Government, FCC, ITU, and Intelligence databases examined

•Investigated Wind Profile Radar(404 MHz) system

-Amplitude, frequency spacings

–Potential RFI to SAR (406 MHz) and DCS (402 MHz)

-No change to RFI in DCS system when WPRs turned off

Data obtained for geolocated regions

–10 km radii

–Frequency range ≈ 31 - 500 MHz

-No good matches in databases

•Some DCPs found (not RFI)

–Will support on-site investigations

GOES	Chanl	Uplink				Mod
(REL Date)		Frequency	Latitude	Longitude	Nearby	&/or BW/
01	15	401 7010			Location	DVV
Jun 04	1.5	401.6000	N 00 13 34	W 078 47 42	EC	Null
14	1.5	401.7205				_
Oct 04		401.721	S 01 13 27	W 078 38 07	EC	FM
15	1.5	401.722				
			S 01 29 28	W 078 45 09	EC	FM
34	1.5	401.7505				
May-Jul			S 00 24 45	W 090 59 00	EC	FM
48	1.5	401.7715				
May-Jul		401.771	S 01 02 52	W 080 31 48	EC	FM
65	1.5	401.7970				
Jul 04		401.797	S 00 45 04	W 078 51 50	EC	Null
May-Jul		401.797	S 00 43 30	W 078 53 04	EC	FM
Oct 04		401.797	S 00 45 33	W 078 51 08	EC	<1.5
66	1.5	401.7985				
July 04		401.799	N 08 08 20	W 063 32 51	VE	Null
67	1.5	401.8000				
May-Jul		401.800	S 02 25 35	W 079 00 35	EC	FM
68	1.5	401.8015				
May-Jul		401.801	S 02 27 32	W 079 02 49	EC	FM
133	1.5	401.8990				
May-Jul		401.899	S 00 03 08	W 078 02 36	EC	FM
134	1.5	401.9005				
May-Jul		401.9000	S 00 02 00	W 078 04 18	EC	FM
166	1.5	401.9485				
May-Jul		401.948	S 00 39 49	W 078 28 26	EC	FM
Sep 04		401.948	S 00 42 26	W 078 24 02	EC	CW
266	3.0	402.0985				
Jan 04		402.099	S 00 07 00	W 078 44 00	Miraflores,EC	FM
Jun 04		402.100	N 00 07 57	W 078 44 31	EC	FM
Jul 04		402.100	S 15 19 51	W 068 15 28	BL	FM
May-Jul		402.100	S 00 07 57	W 078 44 31	Miraflores, EC	FM
Aug 04		402.100	N 00 06 12	W 078 40 31	Miraflores, EC	FM
Oct 04		402.097	N 00 08 30	W 078 41 39	Miraflores, EC	>3.1

Geo-location Results Ch 266

Hawaii-Ewa Beach Field Investigation

-Contacted PACCOM Frequency Manager, Pacific Theatre for area support to locate RFI emitter -Team travel to Ewa Beach, HI commenced 11/12/04

-On-site testing confirmed pilot tone transmitter for Japanese DCS-GMS located at the NWS Pacific Tsunami Warning Center identified as source of signal on Ch 266 for GOES West and Far West via field testing – not on GOES East -Team returned on on 11/19/04 -Further coordination with GMS sponsor at NASA GSFC

continuing for frequency management

Vitel Model GR3170 Pilot Transmitter on Ch266 and rack containing old microwave gear

building, antenna, transmitter

NOAA Satellites and Information National Environmental Satellite, Data, and Information Service

EC-Chs 1,15,34,48,65,67,68,133,&266; VE Ch-66 C

_

Channel 65 (GOES 10 & 12) Single RFI Source

Channel 266 (GOES 10 & 12) Multiple RFI Sources

Summary/Conclusions

•Narrowband RFI is widespread throughout DCS system

-RFI not local or GOES generated

-Frequency shifts differ through GOES spacecraft

•JSC still searching for matches with system characteristics and geolocations

- •Identification of Ewa Beach RFI source successful utilizing geolocation
- •Continue pursuing other identified locations for interference sources

