CDMA-Based DCP Communications System

Ryan Shoup, John Taylor, Bob Wezalis
DCP CDMA-Overlay Overview

- CDMA overview
- CDMA-overlay concept
 - Overview
 - Capacity results
- CDMA-only concept
 - Overview
 - Capacity results
- Considerations in applying CDMA to DCS
- Summary
CDMA Overview

• CDMA users transmit spread spectrum signal at the same time using all of the available bandwidth
 – Each user assigned a unique code so that the receiver can separate out a particular user’s signal
 – Codes have low cross correlation for separation
 • Wideband signals interfere with each other
• Managed Resource
 – Power compared to frequency (FDMA) or time (TDMA)
 – CDMA capacity maximized when the SINRs of the users are all equal and minimum for a desired BER
• “Soft degradation” with increasing number of users
 – CDMA: Supported based on tolerable amount of interference
 • If BER of 10^{-5} is acceptable compared to 10^{-6} → Capacity increase
• CDMA Presence
 – Terrestrial cellular migrating to CDMA (IS95 → IS2000, GSM → WCDMA)
 – Conceptual design for Globalstar based on CDMA
CDMA Overview (con’t)

- **Asynchronous CDMA vs Synchronous CDMA**
 - Synchronous requires signals be aligned in time but better capacity
 - Signal alignment is at the chip level: Clocks need to be accurate on microsecond scale, path delays need to be known to the microsecond level, etc.
 - Cellular uses synchronous on the links from base station to mobile (1→many) channel
 - Asynchronous does not require signals to be aligned in time but worse capacity
 - Cellular uses asynchronous on the links from mobile to base station (many→1) channel

- **Spreading Sequences or “Codes”**
 - Long random codes
 - Capacity interference limited (ie: as $C/N_0 \to \infty$, capacity still finite)
 - Requires more granular synchronization
 - Short codes
 - Capacity Interference limited
 - No synchronization required
 - Orthogonal codes
 - Capacity not interference limited
 - Limited Applicability
CDMA Overview: Application to DCS System

- CDMA DCP system is a many→1 communications channel
 - Multiple DCPs transmit to single CDA
- Two development paths
 - Use of orthogonal codes *(Probably Not Practical for DCS)*
 - Capacity follows Shannon limit
 - Users to do not interfere
 - Requires that DCP signal arrive at the CDA code-aligned in time
 - Requires that DCP know delay through entire communications chain to an accuracy of approximately 10-20us
 - Continuous updating needed to account for satellite drift as satellite drift could result in more than 20us of change in delay
 - Continuous updating implies a closed loop timing system which requires DCPs receive information from CDA to update timing
 - Any doppler / multipath in propagation environment reduces degree of orthogonality of codes. Multiple propagation paths (1 per DCP) complicates problem.
 - Neither Globalstar nor terrestrial Cellular systems use orthogonal codes on many→1 channels
 - Use of non orthogonal codes *(More Practical for DCS)*
 - Capacity becomes interference limited which is less than Shannon limit
 - Power control critical as capacity is maximized when power levels of signals received at the CDA all equal
 - Unequal signal powers reduces capacity significantly
DCP CDMA-Overlay Concept

- Overlay a CDMA-based DCP uplink onto the current 400KHz of spectrum used for the existing DCPR system
- Assign unique random codes to the individual CDMA-overlay DCPs
- CDMA-overlay DCPs transmit a 400KHz direct sequence spread spectrum (DSSS) signal simultaneously
 - Results in interference to both CDMA and FDMA DCPs
 - Goal is to ensure interference levels are tolerable for both
 - Interference well modeled as AWGN
- CDMA Receiver demodulates DSSS signals for each CDMA-based DCP
- Power levels need to be managed
 - Excessive powers (link margin) for the desired BER results in unnecessary interference
- Admission control
 - Optimal (maximize capacity) implementation should be based on current interference levels
DCP CDMA-Overlay Concept

- CDMA-overlay signals coexist with existing FDMA system without any change to system
 - Useful to support low frequency unscheduled transmissions such as emergency transmissions
 - CDMA-overlay transmitters provided to DCPs that may require emergency transmissions
 - All emergency transmission dissemination sites equipped with CDMA receivers
- CDMA-overlay transmitters exist as separate units (wrt existing FDMA transmitter)
 - Share same antenna and possibly PA
- CDMA-overlay receivers exist as separate units
 - Share same antenna
 - Possibly share same RF front-end
 - Baseband signal processing component exists as separate unit
DCS Spectrum

Existing System

CDMA Overlay

Watts

400 KHz

Marginal

Existing FDMA Signals

Thermal Noise

Interference From All CDMA Signals

1 CDMA Signal

Thermal Noise

Watts

400 KHz

Less Margin

Existing FDMA Signals

Interference From All CDMA Signals

Thermal Noise
Power Control

• Ideal power control would result in all CDMA-overlay receive powers being equal and minimum to support desired BER performance level
• Power control error reduces capacity
• Three approaches to power control
 – No power control
 • Receive power differences ~ 6 dB (terrestrial cellular as high as 50 – 75 dB)
 • Path loss, channel (rain, ionospheric affects), antenna gain, specification allows for difference in transmit power
 – Open loop power control
 • CDMA-overlay DCPs measure receive power from DCPI link
 • Transmit power based on measured receive power
 • Account for path loss differences and channel
 • Differences in receive power with open loop power control ~ 3 dB
 – Closed loop power control
 • DCPI link used to send up/down commands to CDMA-overlay DCPs
 • Differences in receive power with open loop power control ~ 2 dB
• Closed loop power control best but most complex to implement
CDMA Signal Reduces Existing FDMA DCP E_b/N_0

- CDMA overlay capacity is limited by the amount of interference CDMA users will introduce to narrowband FDMA users.
- Plot shows how Existing FDMA DCP E_b/N_0 decreases as a function of overlay users.

Illustrates $E_b/N_0 \downarrow$ as CDMA-overlay users \uparrow.

![CDMA Interference Impact to Existing FDMA DCPs](chart.png)
Theoretical CDMA-Overlay Capacity

- CDMA-overlay Capacity
 - Perfect power control
 - Ideal Receiver
- Assume typical DCPR operating $EB/N_0 \sim 13-16$ dB
- Further minimum $EB/N_0 \sim 12$ dB
 - Based on empirical DCPR test results
- Number of users ~ 50 to 110

Minimum Required Existing FDMA EB/N_0

Operating Region:
EB/N_0 Received $\sim 13-16$ dB
Required Minimum $EB/N_0 \sim 12$ dB

Number of CDMA-overlay Users

Actual Existing FDMA EB/N_0

Users Supported

Number of CDMA-overlay Users
Practical CDMA-Overlay Capacity

- Non Ideal CDMA-overlay Capacity
 - CDMA DCPs receive powers vary by 6 dB
 - Receive powers neither equal nor minimum
- Number of users ~ 20 to 45

Minimum Required Existing FDMA E_B/N_0

Operating Region:
E_B/N_0 Received ~ 13-16 dB
Required Minimum E_B/N_0 ~ 12 dB

Actual Existing FDMA E_B/N_0

Users Supported
Number of CDMA-overlay Users
CDMA-Only High Level Concept

- **Uplink (Link from DCP to CDAS)**
 - New 400 KHz bandwidth frequency assignment
 - Use CDMA only
 - Design to support ~ 400-450 simultaneous channels (300 BPS)
 - Data and a few control channels
 - Asynchronous
 - User signals not aligned in time
 - BPSK data modulation

- **Downlink (Link from CDAS to DCP)**
 - New 40 KHz bandwidth frequency assignment
 - Use CDMA only
 - Design to support 32 simultaneous channels (300 BPS)
 - Power control + control channels
 - Synchronous
 - Signals aligned in time
 - Allows use of orthogonal codes
 - QPSK data modulation

\[\frac{E_b}{I_0 + N_0} = 2 \text{ dB} \]
CDMA “Pole Capacity”

- Pole capacity: Theoretical maximum number of users
 - Pole capacity attained when $E_B/N_0 \to \infty$
 - Curve assumes random codes

- Practical operating range given by “rise over thermal” between 3-10 dB

- Ideal receiver
 - Impairments due to noise + interference only

![CDMA Pole Capacity Graph]

- E_B/N_0 (dB) vs. Users
- Operating Region
- Theoretical maximum number of simultaneous users
- Rise over thermal
 - $I_0/N_0 = 10$ dB
 - $I_0/N_0 = 3$ dB
Impact of Power Control

- Pole capacity decreases with inability to control power
- Power control error = power received beyond what is necessary to sustain desired BER
Why has the Cellular Community adopted CDMA?

- Better suited for multipath fading channels
 - Additional paths “combined” to result in path diversity
 - FDMA/TDMA, additional paths not able to be combined and results in link degradation
- Better suited when omni antennas employed
- Better suited for cellular networks (terrestrial) or spot-beam (satellite) applications
 - Universal frequency reuse: CDMA reuses same frequencies in adjacent cells (unlike TMDA/FDMA)
 - Soft Handoff gains
- Resistant to narrowband interference
 - CDMA inherently spread spectrum
- Inactivity Gain
 - Inactivity (such as pauses in speech) can be translated to capacity gain. This is not possible with FDMA and difficult with TDMA.
CDMA Challenges for DCP

- General Purpose COTS Chipset Availability
 - Want to use commercial chipsets as custom development of chipsets costly
 - CDMA signals require much digital/signal processing resulting in complex ICs
 - Existing chipsets are commercially available but designed specifically for IS2000 or WCDMA which probably wouldn’t be appropriate for a DCS CDMA system
 - Chip rates different, Chip sets assume maximum difference in path delay between transmitting units < 250 km, etc

- CDMA systems are more complex
 - Power control
 - Admission control

- CDMA-only system is a complete redesign/overhaul of existing system

- CDMA-overlay represents additional hardware to CDA and new transmitters for CDMA-overlay DCPs but existing system remains
DCS CDMA Summary

- CDMA-only DCS system
 - Number of simultaneous users comparable to simpler FDMA system
 - CDMA system significantly more complex and would require essentially a complete redesign of current DCS system

- CDMA-Overlay DCS system
 - May be an effective scheme to support a low number of non-scheduled additional messages
 - No change to satellite required
 - No change to operating practices to support ~ 20 CDMA-overlay users
 - Used for emergency channels, etc.